ВПЛИВ СИНТАКСИЧНИХ ЗВ’ЯЗКІВ У РЕЧЕННЯХ НА ЯКІСТЬ ІДЕНТИФІКАЦІЇ ТОКСИЧНИХ КОМЕНТАРІВ В СОЦІАЛЬНІЙ МЕРЕЖІ
DOI:
https://doi.org/10.31649/2307-5376-2019-4-35-42Ключові слова:
аналіз тексту, обробка природньої мови, синтаксичні зв’язки, токсичні коментарі, соціальна мережа, ідентифікація, автоматичне навчання, відбір ознакАнотація
Соціальні мережі все частіше стають середовищем для погроз, образ та інших складових кібербулінгу. В онлайнових соціальних мережах задіяна величезна кількість людей, тому виникає потреба в автоматизації діяльності із захисту користувачів від антисоціального впливу. Одним із важливих напрямків такої діяльності є виявлення токсичних коментарів, що містять погрози, образи, зневагу до оточуючих тощо. Зазвичай ідентифікацію токсичних коментарів здійснюють за статистикою мішка слів та мішка символів. В статті досліджується вплив синтаксичних зв’язків у реченнях на якість ідентифікації токсичних коментарів в соціальній мережі. Під синтаксичними зв’язками розуміються зв'язки із власними назвами, з особовими займенниками, з присвійними займенниками тощо. Всього перевірено двадцять синтаксичних ознак речень. Встановлено, що додаткове врахування трьох специфічних ознак суттєво покращує якість ідентифікації токсичних коментарів. Цими трьома специфічними ознаками є такі: кількість зв'язків з власними назвами в однині, кількість зв'язків, в яких фігурують погані слова та кількість зв'язків між особовими займенниками та поганими словами. Експерименти проведено на основі даних із kaggle-змагання “Toxic Comment Classification Challenge”. Оригінальну kaggle-задачу категоризації токсичних коментарів було модифіковану у задачу класифікації з двома альтернативами: нейтральний коментар та токсичний коментар. Для наших експериментів оригінальну вибірку із 159751 коментарів скорочено до 106590 коментарів через проблеми з автоматичним виділенням синтаксичних ознак тексту. В модифікованій вибірці частка токсичних коментарів становить 12.8%. Для врахування незбалансованості вибірки даних метрикою якості обрано середнє значення частот помилок класифікації кожного типу. Класифікацію здійснено за допомогою дерева рішень. Дерева рішень синтезувалися за двох правил розщеплення: на основі індекса Джині та ентропійного критерію.
##submission.downloads##
-
PDF
Завантажень: 166